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Abstract

This paper studies how large populations of rationally inattentive individuals ac-

quire information about economic fundamentals when, along with the motive to

accurately estimate the fundamental, they have coordination motives. Informa-

tion acquisition is costly but flexible: players freely choose how to correlate their

signal with the fundamental, paying costs linear in Shannon mutual information.

A characterization of the class of equilibria in continuous strategies is provided,

without restricting the fundamental to follow a normal prior. Equilibria where

the population-wide average action is an affine function of the fundamental exist

only when the fundamental is normally distributed. A novel method that allows

the study of non-normal priors is developed. Using this method, the paper demon-

strates that small departures from normality can lead to distributions of equilibrium

actions that differ significantly from those of Gaussian models. Such “distortions”

can potentially explain highly skewed distributions of observed actions (e.g. prices)

even if economic fundamentals are almost normally distributed.
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1 Introduction

A situation that often arises in financial and economic settings is one in which “play-

ers wish to do the right thing [. . . ] and do it together” (Myatt and Wallace 2012, p.

340). That is, players have incentives to guess what the value of some economic fun-

damental is (“do the right thing”) and to make guesses close to those of others (“do it

together”). Motivating examples come from industrial organization, where firms com-

pete in price-setting oligopolies (see Myatt and Wallace 2012, 2015); financial markets,

where traders try to forecast the value of the fundamental while competing with each

other (Allen, Morris, and Shin 2006); or investment games (as in Angeletos and Pa-

van 2004). When accurate and clear signals that reflect economic fundamentals are

publicly available, these coordination problems can be resolved, or at least alleviated.

Nevertheless, economic agents interact primarily in complex environments where —

even though all relevant information about fundamentals is freely available in principle

— paying attention (processing information) comes at non-negligible costs.

This paper studies such situations where many players are driven by fundamental

motives along with coordination motives. The players are rationally inattentive (Sims

2003) and can acquire costly information about the fundamental in a flexible manner

(Yang 2015). Solving for equilibrium in a complex environment like that can be chal-

lenging without imposing simplifying assumptions. Firstly, despite this difficulty, the

present study characterizes equilibria in which players’ actions follow continous distri-

butions by providing an easy-to-verify condition without imposing a normal prior (as

is often done in existing studies). Secondly, the paper shows that equilibria in which

the population-wide average action is a linear function of the fundamental exist only

if the fundamental is normally distributed. Thirdly, it demonstrates that even small

departures from a Gaussian prior can lead to distributions of equilibrium objects that

differ significantly from the ones obtained for normal priors, giving new insights into

how markets aggregate information.

These interactions are modeled through a beauty contest game à la Morris and Shin

(2002). The economic fundamental that is relevant for players’ payoffs (henceforth the

fundamental) is a random variable that follows a commonly known prior over the real

line. Each of many players takes an action (a real number) and loses payoff according to
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a weighted average between (a) the squared distance of her action from the realization

of the fundamental and (b) the squared distance of her action from the population-wide

average action. The weight placed on the distance from the average action can vary and

is termed the coordination motive.

Following the seminal work of Morris and Shin (2002), there is a large and growing

literature that studies under which conditions more “public” or more “private” informa-

tion is socially optimal. Traditionally, authors considered exogenous information struc-

tures: the players cannot affect the information they get and can only make decisions

based on signals they passively receive. Exceptions include Myatt and Wallace (2012,

2015), Dewan and Myatt (2008) and Hellwig and Veldkamp (2009). In these models,

players obtain information endogenously by purchasing more signals from different

sources or by increasing their signal precision at a cost. Endogenizing the information

acquisition process can be a more realistic approach as agents are allowed to choose

whether to acquire information or not depending on its value. Moreover, agents can

choose which type of information to attend to.

The literature on endogenous information acquisition has mostly assumed specific

functional forms for the distribution of the fundamental and of the signals that the play-

ers observe (typically Gaussian). The information acqusition technology is — in this

sense — rigid, and thus restrictive. Real-world agents often have access to a multitude

of informational sources almost free of any cost. For example, virtually all information

relevant to stock exchange movements can be easily accessed on the internet. What is

costly is the processing of information that these sources convey, as it requires agents’

attention — a scarce resource. Capturing the flexibility of indiviudals to process infor-

mation in any way they want, the rational inattention framework Sims (1998, 2003)

offers a way to go beyond the rigid Gaussian functional form assumtion.1

In rational inattention models, players are not passive recipients of information, nor

1 Sims (1998, 2003) introduced rational inattention as a possible explanation of sluggish macroe-

conomic adjustments. Woodford (2008, 2009) has used it in state-dependent pricing settings where

producers can revise their prices in continuous time, and they do so depending on market conditions.

Rational inattention has also been used to analyze strategic interactions: Maćkowiak and Wiederholt

(2009) study how rationally inattentive firms set prices in a monopolistic competition environment,

whereas Yang (2015) focuses on investors’ binary decisions to invest or not. Maćkowiak, Matějka, and

Wiederholt (2018) provide a recent survey of the rational inattention literature.
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is their information signal restricted to a particular form (e.g. Gaussian). Instead, each

player receives information about the fundamental by designing her own information

channel: an endogenous process that narrows down her belief about the fundamental.

The more informative this “experiment” is, the more attention it requires and the more

costly it is. In particular, the cost can be linear in the expected reduction of Shannon

entropy (Shannon 1948) between the player’s prior and posterior beliefs.2 When de-

ciding, each player chooses how to efficiently allocate her attention: not only does she

trade off the benefit of the extra bit of information to its cost but she also decides to

which events this extra bit is going to be allocated. In this sense, information acquisition

is flexible (Yang 2015, 2019).

Among others, Matějka and McKay (2015) recognise that without the normal prior

assumption continuous solutions to rational inattention problems are hard to calculate

in decision-theoretic problems, let alone strategic environments. However, in order to

explore how sensitive equilibrium results are with respect to the prior distribution, it

is important to model these processes without the normality assumption. The present

paper is the first to address this sensitivity issue in spite of the apparent difficulty.

To this goal, the paper provides a characterization of continuous-strategy equilib-

ria without assuming a normal prior and establishes some of their properties. It then

proceeds to show that tractable equilibria for which the average action is affine in the

fundamental exist only if the prior is normal. This hints that results derived for normal

priors may not extend to other distributions. Inquiring further, it demonstrates that

even when prior distributions are very close to the normal, the distributions of the in-

dividual action and the population-wide average action can be significantly different

from those derived for a Gaussian prior.

Put differently, it is shown that similar problems can have sharply different distri-

butions of optimal choices, much in the spirit of Jung et al. (2019). The source of the

difference, though, does not lie in the discreteness of the optimal solution (as in Jung

2 Csiszár (2008) provides an axiomatization of the Shannon entropy information measure. For a

more detailed argumentation about why Shannon entropy is an appropriate measure for information in

economic models, see Jung et al. (2019, section 9.2). However, Denti, Marinacci, and Rustichini (2019)

point out that costs based on mutual information cannot be derived from costs on actual experiments

taken as primitives, since the former vanish as the prior becomes more dogmatic. The present paper

abstracts from the details of the process that lead to mutual information costs.
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et al. 2019) but is rather an equilibrium effect resulting from the strategic complemen-

tarities present in coordination games.

Small departures from the normal prior can yield qualitatively novel results. For

example, they can lead to highly skewed distributions of equilibrium objects. So, high

skewedness in observed equilibrium quantities (e.g. prices) can potentially be explained

as a result of small non-Gaussian “distortions” of the prior, amplified by the coordination

motive of market participants. Therefore, the normal prior assumption cannot be made

without loss of generality. While using a normal prior can buy the modeler a lot in terms

of tractability, it also mutes by construction any potential novel results — especially if

higher moments of distributions are of interest as in, for example, finance applications.

Along with Myatt and Wallace (2012), who study economic beauty contests with en-

dogenous information acquisition, and Yang (2015), who introduced flexible informa-

tion acquisition technology, Denti (2019) is closely related to this study.3 Denti (2019)

studies a more general strategic environment and allows players to design signals that

can be correlated even after conditioning on the fundamental, while paying a cost that

is increasing in the Blackwell order (Blackwell 1951, 1953). In this sense, his agents

use an unrestricted information acquisition technology. The information structure used

by Denti (2019) is, therefore, richer than the one used herein, and leads to Bayes cor-

related equilibria (Bergemann and Morris 2016).4 A detailed discussion of how results

in the existing litarature relate those presented here is postponed to Section 7.

The paper is organized as follows: Section 2 sets up the model. Section 3 stud-

ies how players best-respond to continuous strategy profiles. Section 4 characterizes

equilibria where players use continuous strategies and generalizes the main result to

populations with heterogeneous costs. Section 5 takes an exhaustive look into the case

of aggregately affine equilibria where the average action of the population is an affine

function of the realization of the fundamental. Section 6 introduces a method to study

non-normal priors and discusses the implications of non-normality. Section 7 discusses

the results of the paper and compares them to the ones in the existing literature.

3Myatt and Wallace (2012), like Morris and Shin (2002), assume a uniform (improper) prior for the

fundamental. Section 7 explains how one should compare the present setting to theirs.
4More recently, Hébert and La’O (2020) use a similar technology to study efficiency and non-

fundamental volatility under different information costs.

4



2 The Model

Consider a large population of (ex-ante) identical expected utility-maximizing players,

who are indexed by i ∈ [0, 1]. Players are incentivized in two different ways: they

want to (a) coordinate (take actions close to one another) and (b) take actions close to

a value θ . The parameter γ ∈ [0, 1) determines how strong the coordination motive is.

Each of them obtains utility given by

ui = −(1− γ)(ai − θ )2 − γ(ai − ā)2 (1)

where ai ∈ Ai = R is player i’s action and ā =
∫ 1

0
ai di represents the players’ (population-

wide) average action. It is assumed that players act in a way such that ā is well-defined.

Indeed, in all equilibria presented in the following sections this holds true.5

The value θ is unknown to the players. In particular, it is the realization of a random

variable θ : Ω→ Θ — the fundamental — where (Ω,Σ, P) is an underlying probability

space and Θ = R. The fundamental is distributed according to Pθ ∈∆(Θ)which is com-

monly known, absolutely continuous, and has full support.6,7 The probability density

function (PDF) of Pθ is denoted by p(·) and is analytic. Moreover, θ is assumed to have

a well-defined mean θ̄ and variance σ2.8

Before choosing her action, each player i gets to privately observe a message, which

is the realization of her signal, a random variable. In particular, player i’s signal is a

measurable function si : Ω → Si, where Si is some rich enough message space.9 The

signal is the only channel through which the player will receive information.
5For a discussion on this point see Myatt and Wallace (2012, footnotes 3 and 6). The integration

over i should be interpreted as the limit of a weighted average of the actions of the “first n players” as

n→∞. For a more formal exposition and discussion see the appendix of Acemoglu and Jensen (2010).

The main implication from assuming an infinite amount of players is that individual players cannot affect

the average action of the population and, thus, take it as given.
6Throughout the paper, ∆(X ) denotes the space of probability measures over space X and Px denotes

the probability distribution of random variable x .
7Note that in Morris and Shin (2002) and Myatt and Wallace (2012) players arrive at a common belief

through updating a diffuse prior based on a publicly observed signal. This is discussed in Section 7.
8Note that p ∈ L2(R) (where R is endowed with the Lebesgue measure) is sufficient for θ̄ and σ2

to be well-defined. Analyticity of p(·) is imposed in order to satisfy the conditions of Matějka and Sims

(2010, proposition 2). Most distributions used by economists in practice satisfy this assumption.
9The message space Si is endowed with a σ-algebra such that si is measurable and the pushforward

measure.
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Importantly, information acquisition is endogenous and each player gets to design

her own signal/channel. Signal design takes place in two steps: (a) choosing the sig-

nal’s support and (b) choosing the signal’s distribution. Players can be very flexible

when designing their signals: any measurable function will do as long as si and s j are

independent for any i 6= j, conditional on the realization θ .10 The flexibility of signal

design allows players to decide not only how much information they want to receive

but also about which events they want to get more information (where they want to

focus their attention).

Information comes at a cost represented by the function C(·), which is the same

across players. Following the standard literature on rational inattention, information

costs are assumed to be linear in Shannon mutual information between the signal and

the fundamental. Mutual information measures by how much observing one variable re-

duces one’s uncertainty about some other random variable. It is defined as the Kullback-

Leibler divergence between the joint and the product distributions of the two variables.

Explicitly, mutual information between the fundamental θ and the signal si is given by

I(θ , si) =

∫

Θ,Si

log
dPθ ,si

dPθ×si

dPθ ,si

if Pθ ,si
� Pθ×si

and I(θ , si) = +∞ otherwise.11 In the former case, Pθ ,si
admits a prob-

ability density function and Psi |θ can be described by conditional probability density

functions q(·|θ ). Then the cost of signal si is given by

C(si) = µ · I(θ , si) = µ

�

∫

Θ

∫

Si

p(θ )qi(si|θ ) log
qi(si|θ )
Q i(si)

dsi dθ

�

(2)

where Q i(·) =
∫

Θ
q(·|θ )p(θ )dθ is the (marginal) PDF of si and µ≥ 0 is the cost per unit

of information.12 The more informative signal si is, the higher the cost of information.

10Conditional signal independence is a natural assumption. It essentially means that players cannot

condition on each other’s messages, since these are private. Thus, any correlation between signals should

be the outcome of the players’ conditioning on the fundamental (i.e. getting information about θ) and

not on one another’s messages. See also Section 7 for further discussion.
11Mutual information is symmetric and non-negatively defined. The derivative appearing in the ex-

pression is the Radon-Nikodym derivative between the joint distribution and the product of the marginal

distributions of θ and si . For a standard textbook treatment of the topic see Cover and Thomas (2006).
12Throughout the paper, log denotes the natural logarithm and so the unit of measurement of infor-
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Say, for example, that Si = R and that q(·|θ ) is very concentrated and changes rapidly

with θ , then the information structure is very informative and will come at a high

cost. If, in contrast, q(·|θ ) does not change with θ , the information structure bears no

information to player i and therefore has zero cost.

Upon receiving her message si, player i has to decide upon an action to take. This

decision, in general, is a mixed strategy i.e. a probability measure Pai |si
∈∆(Ai) for each

message si ∈ Si.
13

The timing is as follows:

1. Each player i — independently from and simultaneously with all other players —

designs her signal si and pays the associated cost C(si).

2. The value of θ is realized.

3. Each player receives a message according to her chosen signal and the realization

of θ . That is, player i’s message is distributed according to Psi |θ .

4. Each player — independently from and simultaneously with others — takes an

action ai ∈ Ai contingent on the signal she received.

5. Players receive payoffs according to (1).

Given the above, a player’s strategy consists of two parts: the signal part si and the

action part ai. Let player i’s strategy be denoted by mi = (si, ai). The whole popula-

tion’s strategy profile will be denoted by m and the strategy profile of the population

excluding player i by m−i. Given a strategy profile m, the population-wide average

action conditional on θ is given by the function ā : R→ R defined through

ā(θ )≡
∫ 1

0

�

∫

S j

�

∫

A j

a j dPa j |s j
(a j|s j)

�

dPs j |θ (s j|θ )

�

d j. (3)

As mentioned before, it is required that ā(·) is well-defined for (almost) all θ . A

sufficient condition for this is that all ai|θ have a variance for (almost) all θ , and

mation is the nat. If the logarithms were taken with a base 2, the unit of measurement of information

would be the bit. Notice that the choice of the unit of measurement does not qualitatively change the

results as 1 bit equals log2 nats. So, the cost parameter µ is given in utils per nat of information.
13Formally, player i’s action strategy is a random variable ai : Ω → Ai which, conditionally on si , is

independent from θ , s j , and a j ( j 6= i).
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that {Var(ai|θ )}i∈[0,1] is bounded. The rest of the analysis focuses on strategy profiles

whereby ā(·) is measurable.

3 Best Responses

Following standard arguments (see Woodford 2008; Yang 2015, for example), in op-

timal strategies messages used by players should correspond to actions: player i takes

action ai if and only if she has received a uniquely defined message si(ai).14 Therefore,

player i’s best response can be summarized by a family of conditional probability mea-

sures Pai |θ that give the distribution over actions (i.e. mixed strategy) conditional on

the realization θ—thus skipping the intermediate step of messages (as each message

corresponds to exactly one action, and vice versa). Let ri(·|θ ) denote the PDF of Pai |θ .

Now, observe that from player i’s point of view, the only way that the other players

are affecting her payoff is through the effect of their strategies on the average action ā.

Thus, player i is not affected by the way that the particular ā comes about. This means

that the object to which she is best-responding is the function ā(·) which summarizes

all of her opponents’ strategies (and which she cannot affect as she is “small”). So, the

decision problem of player i is the following:

max
ri

U(ri, r−i)−µI(θ , ai)

where

U(ri, r−i) = −(1− γ)
∫

Θ

∫

Ai

(ai − θ )2ri(ai|θ )p(θ )dai dθ −

− γ

∫

Θ

∫

Ai

(ai − ā(θ ))2ri(ai|θ )dai dθ

with ā(θ ) given by

ā(θ ) =

∫ 1

0

∫

A j

a j r j(a j|θ )da j d j.

As a first result, it is easy to show that if information is costless, player i has an

essentially unique pure-strategy best response to any ā(·).
14A detailed proof is provided in the Online Appendix for completeness.
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Proposition 1. Let (p,γ,µ) be a beauty contest with flexible information acquisition. If

µ = 0, then for any ā(·) player i has an essentially unique best response that assigns

probability mass of 1 to the action

b(θ ) = (1− γ)θ + γā(θ ) (4)

(p-almost all θ ∈ Θ).

Proof. See Appendix A.1.

The function b : R→ R defined through equation (4) will be refered to as the best

action function of the strategy profile. It gives the action that a fully informed individual

would take when she best-responds to a profile with average action ā(·). The focus from

now on is on strategy profiles that satisfy some smoothness conditions.

Definition 1 (Smooth, monotone, full-support profile). A strategy profile r is a smooth,

monotone, full-support profile if

1. the profile’s average action function ā(·) is analytic in its argument, and

2. ā′(θ )> −1−γ
γ for all θ ∈ R.

The two requirements ensure that the best action function b(·) is strictly increasing,

analytic and bijective. Notice that 2 is not too restrictive since it is satisfied for any

weakly increasing ā(·) but allows for the average action function to be decreasing in

the realization of the fundamental (but not too fast), even though such behavior may

not make intuitive sense.15 Since in a smooth, monotone, full-support profile b(·) is

bijective, it is also invertible. Let θ (·) := b−1(·) denote the inverse of b(·) and g(·)
denote the PDF of the distribution that the best action follows. The PDF g(·) is, then,

g(·) = p (θ (·))θ ′(·) (5)

and is analytic. The variance of the best action (the variance of g(·)) is denoted by σ2
b.

15In fact, in Proposition 5 it will be shown that such unintuitive behavior does not take place in equi-

librium, even though the definition of smooth, monotone, full-support profile does not preclude it.
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The analysis presented here and in Section 4 focuses on players using strategies that

have densities, termed continuous straetegies.16

Definition 2 (Continuous strategy). Strategy ri of player i is continuous if ri(·|θ ) is

absolutely continuous with respect to the Lebesgue measure for (p-almost) all θ ∈ Θ.

The following proposition provides necessary and sufficient conditions for the ex-

istence of a continuous best response to a smooth, monotone, full-support profile (see

also Matějka and Sims 2010).

Proposition 2. Let (p,γ,µ) with µ > 0 be a beauty contest with flexible information

acquisition. Let also r−i be a smooth, monotone, full-support strategy profile of player i’s

opponents. Player i has a continuous best response to r−i if and only if

Ri :=F−1
ξ

�

exp(µπ2ξ2) ĝ(ξ)
�

is the PDF of a probability distribution. (6)

This continuous strategy is her unique best response and is given by

ri(ai|θ ) = Ri(ai)
b′(θ )
p(θ )

1
p
πµ

exp

�

−
(ai − b(θ ))2

µ

�

where Ri(ai) is the marginal density of action ai.

Proof. See Appendix A.2.

Throughout the paper, Fx and F−1
ξ

denote the Fourier and inverse Fourier transforms

defined as

Fx[ f (x)](ξ) =

∫ +∞

−∞
f (x)exp(−2πıxξ)dx (7)

and F−1
ξ
[F(ξ)](x) =

∫ +∞

−∞
F(ξ)exp(2πıxξ)dξ (8)

respectively (ı is the imaginary unit). Moreover, the shorthand notation with the hat

operator f̂ (ξ) :=Fx[ f (x)](ξ) is used sometimes.

16 The focus on continuous strategies may seem quite restrictive at first, especially since Jung et al.

(2019) find that even in continuous environments optimal strategies might be “discrete,” i.e., admit no

density. At the end of Section 3 it is argued that in the present setting discontinuous strategies are unlikely

to appear in equilibrium when information costs are not too large, so as to allow for enough information

acquisition.
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In the remainder of the paper, the terms “best response to r−i,” “best response to

ā(·),” and “best response to b(·)” will be used interchangeably as all smooth, monotone,

full-support profiles r−i that yield the same ā(·)will lead to the same best response from

player i and for a given γ there is a one-to-one relation between ā(·) and b(·) (see (4)).

Notice that it can be the case that R̂i(·) as calculated from (6) is the Fourier transform

of a probability distribution containing atoms. If so, then the solution to the optimiza-

tion problem is still given by Proposition 2 but it is no longer in continuous strategies

(see also the comment on discontinuous strategies at the end of this Section).

Condition (6) states that g(·) can be written as the convolution of two distributions,

one of them being normal with variance µ/2 and the other one being Ri(·). If this is

possible, then Ri is the marginal distribution of player i’s action. Put differently, the

best action b, viewed as a random variable, should be able to be written as the sum of

two other independently distributed random variables — ai and εi — where the latter

is noise following N(0,µ/2). Clearly, for that to be feasible the “resolution”
p

µ/2 must

be small enough.17

From the above analysis, the posterior belief of a player that has received message ai

should be normally distributed. This is formally captured in the following Proposition.

Proposition 3. Let (p,γ,µ) be a beauty contest with flexible information acquisition and

r−i be a smooth, monotone, full-support strategy profile of player i’s opponents such that

condition (6) holds. In player i’s best response, her posterior belief about the best action b

has a PDF given by

%i(b|ai) =
1
p
πµ

exp

�

−
(ai − b)2

µ

�

.

Proof. See Appendix A.3.

In her best response, the posterior that player i has when she takes action ai is in-

dependent of the prior distribution of the fundamental. Moreover, this posterior follows

a normal distribution. This is a result of two things: the quadratic-losses objective and

the Shannon-entropy-based information costs. Firstly, the quadratic losses form of the

objective function gives incentives to take an action as close as possible to b(·) and

17A necessary condition is that Ri as calculated from (6) has a positive variance, i.e. that σ2
b > µ/2.

Another, stronger, necessary condition is that Var(ai |b)> 0 for all b (see Proposition 5).
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with the smallest possible variance of deviation from that. Secondly, the entropy-based

information costs give incentives to have posteriors with high entropy. Additionally,

among the family of distributions with full support on R and a given mean x0 and

variance σ2, the Gaussian N(x0,σ2) is the distribution with the maximum entropy (in

this sense, the normal distribution is “informationally efficient”). Therefore, a normally

distributed posterior is the “cheapest” one that achieves any given variance level.18

In light of Proposition 3, the effect of an increasing cost µ to player i’s strategy

becomes clear. A higher µ forces the player to have a less accurate posterior on what

the best action is (as a more accurate belief would be more costly). Since r(·|θ ) needs

to be a PDF,
∫ +∞
−∞r(ai|θ )dai = 1 must hold for all θ . As higher µ induces more dispersed

%(·|ai), in order for this condition to be satisfied, the marginal distribution of actions

Ri(·) needs to become more concentrated. When the value of µ reaches the point where

condition (6) ceases to hold, player i switches to discontinuous strategies.

Proposition 4. Let g(·) be the distribution of the best action of a smooth, monotone, full-

support strategy profile of player i’s opponents that satisfies condition (6). In player i’s

best response, her expected action conditional on the best action being b is given by

α(b) := E(ai|b) = b+
µ

2
d

db
(log(g(b))) . (9)

Proof. See Appendix A.4.

The above proposition shows a rationally inattentive player’s expected response to

a linear-quadratic problem in which her “target” b is distributed according to g(·). The

player’s expected action is higher than b when g ′(b) is positive, whereas it is “lagging”

behind it when g ′(b) is negative. Moreover, the less likely b is (the lower g(b) is), the

higher the error |α(b)− b|. Finally, errors are larger with higher information costs µ.

So, the average action tends to be more concentrated around peaks in b’s distribution

with higher costs leading to larger discrepancies.

Proposition 5. Let g(·) be the distribution of the best action of a smooth, monotone,

full-support strategy profile of player i’s opponents that satisfies condition (6).

18The Online Appendix has a variant of this result for a broader class of games. Just as in Proposition

3, a player’s posterior on b does not depend on the prior but only depends on the payoff function and

the information cost. It is Gaussian iff payoffs are given by quadratic losses. See also Jung et al. (2019).
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1. The variance of player i’s action in her best response is given by

Var(ai) = Var(b)−µ/2 (10)

2. and its variance conditional on the best action being b is given by

Var(ai|b) =
µ

2
+
µ2

4
d2

db2
(log(g(b))) . (11)

3. Moreover, α(·) and θ 7→ E(ai|θ ) are increasing functions.

Proof. See Appendix A.5.

Points 1 and 2 provide necessary conditions that the distribution of the best action

to a smooth, monotone, full-support profile has to satisfy. Point 3 is a reassuring result

confirming that in a best response the expected action moves in “the right way,” i.e.,

follows the direction in which the best action and the fundamental move.

Results up to now concerned a player’s best response to a “best action” distribution

g(·): an equilibrium object. The way in which g(·) and other equilibrium objects are

shaped by the model’s primitives (the prior p, coordination motive γ and cost µ) is

addressed in Sections 4–6

Comment: Continuous and Discontinuous Strategies

Jung et al. (2019) find that continuous problems with mutual information costs can

have discontinuous solutions. Below it is argued that unless information costs are large,

in the present setting discontinuous strategies are unlikely to appear in equilibrium.

Begin with the following observation: In discrete optimal strategies à la Jung et al.

(2019) the conditional probability π(a|θ ) received by an action a in the (countable)

consideration set is a continuous function of θ . In fact, it is analytic since it is driven

by the analytic utility function (eq. (1)) and is modulated through the also analytic

p(·). Therefore, even in a strategy profile where all players use discrete strategies, the

average action ā(·) and, in consequence, the best action b(·) are analytic functions of

θ . Now, as long as the information cost is low enough compared to the best action’s

distribution (condition (6)), the fact that p(·) and b(·) are analytic is sufficient to ensure
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that the best response has, indeed, a density (Matějka and Sims 2010, proposition 2).

So, when information is not too expensive, continuous equilibria should be more likely.

If condition (6) does not hold (i.e., if µ is high), then the solution to player i’s

optimization problem is in discontinuous strategies. In this case, player i’s best response

includes putting probability atoms on some subset of the action space that has no limit

points instead of following a strategy with full support. The solution to this problem can

be identified numerically (as in Jung et al. 2019) and the action distribution follows a

multinomial logit rule as in Matějka and McKay (2015). In the extreme case, the support

of R(·) is a single point and the player acquires no information (see also Section 5).

4 Equilibrium

Building on the results of Section 3, the class of equilibria in which players use contin-

uous strategies (see Definition 2) is characterized in what follows. Some properties of

this equilibrium class are described in Section 4.2, whereas 4.3 generalizes the main

characterization result in populations with heterogeneous information costs.

4.1 Smooth, monotone, full-support equilibria

Having established conditions for the existence of a continuous best response to smooth,

monotone, full-support strategy profiles (see Proposition 2), attention is now shifted

towards equilibria whereby individual strategies are continuous. Such equilibria are

defined formally as follows.

Definition 3 (Smooth, monotone, full-support equilibrium). A strategy profile r is called

a smooth, monotone, full-support equilibrium (SMFE) if

1. Profile r is a smooth, monotone, full-support profile,

and the strategy ri of each player i ∈ [0, 1] is

2. continuous and

3. a best response to r.
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As discussed in Section 3, when information costs are low enough, if the candidate

equilibrium strategy profile satisfies point 1 of the above definition, then the best re-

sponse to that would necessarily be continuous (i.e. it would satisfy point 2). Point 3

states that an SMFE is a fixed point. The following proposition provides a characteriza-

tion of the class of SMFE.

Proposition 6. Let (p,γ,µ) be a beauty contest with flexible information acquisition. Then

the following two statements are equivalent

(A) θ (·) is the inverse of the best action function and g(·) is the PDF of the distribution of

the best action in an SMFE.

(B) θ : R → R is a strictly increasing bijection, F−1
ξ
[exp(µπ2ξ2) ĝ(ξ)] is a probability

distribution,

θ (b) = b−
µγ

2(1− γ)
d

db
(log(g(b))), and (12)

g(b) = p(θ (b))θ ′(b). (13)

Proof. See Appendix A.6.

On the one hand, equation (12) holds independently of the prior and has to do with

the way that individuals acquire information. On the other hand, equation (13) forces

the distribution g(·) to be generated by the particular best action function (or, to be

precise, its inverse) given the fundemental’s prior distribution p(·), as seen in equation

(5). According to Proposition 6, a distribution g(·) generates a unique θ (·) through

(12). Similarly, a best action function with inverse θ (·) generates a unique distribution

g(·) through (13). If these hold simultaneously, then an equilibrium has been identified.

Corollary 1. In an SMFE, the best action function satisfies

b(θ ) = θ +
µγ

2(1− γ)
1

b′(θ )
d

dθ

�

log
�

p(θ )
b′(θ )

��

(14)

and the average action function satisfies

ā(θ ) = θ +
µ

2(1− γ)(1+ γ(ā′(θ )− 1))

�

p′(θ )
p(θ )

−
γā′′(θ )

1+ γ(ā′(θ )− 1)

�

. (15)
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Sections 5 and 6 demonstrate that SMFE exist for certain classes of priors and for

information costs µ bounded away from zero. With this in hand, the existence of SMFE

for other families of priors and non-vanishing costs can be established through homo-

topy arguments.

Examining the equations of Corollary 1, it is seen that the equilibrium b(θ ) deviates

from θ to the extent that µγ/2(1 − γ) is positive. This has two implications. Firstly,

absent coordination motives (γ = 0) the best action function coincides with θ . Sec-

ondly, as information costs µ decrease, the deviations of the equilibrium best action

and average action from θ are be becoming smaller. In particular, only when µ = 0

does equation (15) give ā(θ ) = θ identically. Of course — as seen in Proposition 1

— the best response to a smooth, monotone, full-support profile is not continuous any

more. Nevertheless, the unique equilibrium that arises in this case is the one where all

players acquire full information and use ri(ai|θ ) = δ(ai − θ ) almost surely. Clearly, in

this equilibrium it is true that ā(θ ) = θ , which is what equation (15) yields for µ= 0.

The Online Appendix characterizes the SMFE in a broader class of games. The ab-

sence of explicit payoff formulas in these more general games, though, limits the us-

ability of the characterization therein.

4.2 Equilibrium properties

Both (14) and (15) are second-order nonlinear differential equations to which a general

solution is not possible to find in closed form. However, it is still possible to describe

some properties that any SMFE should have. Two sets of results are provided. Firstly

the behavior of b(·) and ā(·) close to ±∞ as well as their ex-ante expected value are

examined. Secondly, a relation between the variance of the best action and the variance

of the fundamental σ2 is established. Together with Propositions 4 and 5, these results

relate to Bergemann and Morris (2013)’s agenda to identify moments of equilibrium

distributions of variables.

Proposition 7. Let r be an SMFE with average action function ā(·) and best action function

b(·). Then

1.
∫ +∞
−∞b(θ )p(θ )dθ =

∫ +∞
−∞ā(θ )p(θ )dθ =

∫ +∞
−∞θ p(θ )dθ = θ̄

2. limθ→+∞ b(θ )− θ < 0 and limθ→+∞ ā(θ )− θ < 0
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3. limθ→−∞ b(θ )− θ > 0 and limθ→−∞ ā(θ )− θ > 0

Proof. See Appendix A.7.

Bergemann and Morris (2013) derive the result of point 1 for a normally distributed

prior and point out that it should hold for any prior. This result says that the “mean

error” that players make is zero. They will miss their target θ most of the time but on

average they should be correct. Points 2 and 3 show that — in equilibrium — players

are biased towards the center of the distribution and take actions with extreme values

(as compared to the ex-ante mean of the distribution) less often.

Proposition 8. Let (p,γ,µ) be a beauty contest with flexible information acquisition that

admits an SMFE and σ2
b be the variance of the best action b in that SMFE. Then

1. σ2 −σ2
b =

µγ

1−γ + Var(θ − b).

2. µ < 2(1−γ)
1+γ σ

2.

Proof. See Appendix A.8.

An immediate consequence of point 1 of Proposition 8 is that in an SMFE the best

action is more concentrated than the fundamental (σ2 ≥ σ2
b). Point 2 gives an upper

bound to the value of µ. This upper bound is not tight: what one can say for sure is

that if µ exceeds this value, then (p,γ,µ) has no SMFE.

4.3 Heterogeneous costs

The preceding equilibrium analysis assumed that all players face the same information

costs. It might well be plausible, though, that in the real world agents face hetero-

geneous costs. Maintaining the assumption that players are rationally inattentive and

facing Shannon entropy costs (i.e. that the costs follow the functional form (2)), play-

ers are allowed to have differing unit information cost. In particular, each agent i has a

cost µi ∈ [µmin,µmax] (0 ≤ µmin < µmax <∞). Let also the distribution of agents’ costs

be M ∈∆([µmin,µmax]) with expected value E(µ) =
∫ µmax

µmin
µdM(µ) = µ̄.

The following proposition looks at the aggregate equilibrium behavior of a hetero-

geneous population M of players that follow continuous strategies.
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Proposition 9. Let a population with costs distributed according to M ∈∆([µmin,µmax])

play a beauty contest with prior p and coordination motive γ. Let also g be the distribution

of the best action in an equilibrium. If F−1
ξ

�

exp(µmaxπ
2ξ2) ĝ(ξ)

�

is the PDF of a proba-

bility distribution, then all players follow continuous strategies in equilibrium, the inverse

of the best action is given by

θ (b) = b−
µ̄γ

2(1− γ)
d

db
(log(g(b))),

and g(·) = p(θ (·))θ ′(·). In fact, this equilibrium is an SMFE.

Proof. See Appendix A.9.

As a consequence of Proposition 9, a heterogeneous population M with low costs

can be conveniently treated as a population of homogeneous players all endowed with

the population-wide average cost µ̄ of M . In particular, the equilibrium average action

and best action should satisfy (14) and (15) with µ := µ̄.

5 Aggregately Affine Equilibria

As mentioned earlier, it is not possible to solve (14) or (15) in the general case. Instead,

this section examines smooth, monotone, full-support equilibria of a specific form. In

particular, equilibria whereby the average action (and, thus, also the best action) is

affine in θ are identified.

Definition 4 (Aggregately affine equilibrium ). An SMFE will be called an aggregately

affine equilibrium (AAE) if the best action function has the form b(θ ) = κθ + d for some

constants κ > 0 and d ∈ R.

The following proposition gives a necessary and sufficient condition for an AAE to

exist.

Proposition 10. Let (p,γ,µ) with µ > 0 and γ > 0 be a beauty contest with flexible

information acquisition. The following statements are equivalent:

(A) (p,γ,µ) admits an aggregately affine equilibrium.
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(B) p is a normal distribution, and

(i) either γ≤ 1
2 and σ2 >

µ

2(1−γ)2

(ii) or γ > 1
2 and σ2 >

2µγ
1−γ .

Proof. See Appendix A.10.

The result of Proposition 10 is stark. It implies that in the presence of strategic mo-

tives and information costs nicely tractable equilibria exist only under the assumption of

a normal prior, which is prevalent in the literature. Under any other prior distribution,

analytically identifying SMFEs becomes a formidable task.

Now, turning to the characterization of the set of equilibria, even though one cannot

easily find the number of equilibria, the following proposition shows that there are cases

where multiple equilibria exist.

Proposition 11. Let (p,γ,µ) be a beauty contest with flexible information with p being a

normal distribution and µ > 0.

1. If either

(a) γ≤ 1
2 and σ2 >

µ

2(1−γ)2 or

(b) γ > 1
2 and σ2 ≥ µ

2(1−γ)2

then (p,γ,µ) admits exactly one AAE with κ= 1
2

�

1+
Ç

1− 2µγ
(1−γ)σ2

�

.

2. If γ > 1
2 and σ2 ∈

�

2µγ
1−γ ,

µ

2(1−γ)2

�

then (p,γ,µ) admits exactly two AAE: one with

κ= 1
2

�

1+
Ç

1− 2µγ
(1−γ)σ2

�

and one with κ= 1
2

�

1−
Ç

1− 2µγ
(1−γ)σ2

�

.

Proof. See Appendix A.11.

Interestingly, under the conditions where two AAE exist, there also exists an equilib-

rium where players do not obtain any information (which happens when σ2
b < µ/2). In

this sense, three equilibria of the classes considered exist under these parameter con-

figurations. Moreover, if neither the conditions of point 1 nor of point 2 hold, there

exists an equilibrium without information acquisition. Notice that in this equilibrium

b′(θ ) = 1− γ for all values of θ . So, the first derivative of b(·) is constant even though
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Figure 1: Aggregately affine equilibria and equilibria without information acquisition

in different regions of µ and γ when θ is normally distributed with variance σ2. Red

area: one AAE; Orange area: two AAE and no-info equilibrium; Blue area: no-info

equilibrium.

this is not an AAE/SMFE, as the strategy that the players use is not continuous. Figure

1 summarizes these results.

The intuition on how multiple equilibria appear under these parameter configura-

tions is the following. Fix the information cost µ and start increasing γ. When γ is small

(γ < 1/2), players are able to coordinate on a unique AAE where they acquire informa-

tion. As γ increases, less information is acquired — as the importance of getting close

to the realized value of θ is decreasing and the motive to coordinate increases. When γ

reaches the critical value for which µ= 2(1− γ)2σ2, the coordination motive becomes

so strong that an equilibrium where no player acquires any information is established: if

no player acquires information, they are sure to perfectly coordinate at θ̄ — thus saving

the costs of acquiring information. When costs are high, there is no overlapping region

where an AAE and an equilibrium without information acquisition coexist. However,

when information costs are lower, there is a region of the coordination parameter that

allows for the existence of an AAE and an equilibrium without information acquisition
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at the same time: coordinating on acquiring and using some information and on not

acquiring any information are both equilibria.

As mentioned previously, under the parameter configurations that allow for the co-

existence of an AAE and an equilibrium without information acquisition, a second AAE

also exists under which each of the players acquires a smaller amount of information

compared to the first, stable AAE (κ is smaller). This second AAE is created as an

in-between case of the two equilibria described above. Moreover, it is unstable in the

sense that iterative best responses lead away from this equilibrium. This argument is

explained in more detail in Appendix B where stability analysis is conducted.

6 Beyond Normality: Method and Implications

6.1 A method to address non-normal priors

Despite it being challenging to identify equilibria in the usual way (i.e. to find smooth,

monotone, full support equilibria for a particular parameter combination (p,γ,µ)), con-

siderable progress can be made through following a “backwards” procedure. In partic-

ular, one can postulate some distribution g(·) to be the PDF of the best action b in an

SMFE and then, making use of equation (12), calculate (analytically or numerically)

the prior distribution of the fundamental through

p(θ ) = g(b(θ ))b′(θ ).

A major challenge that arises during this process rests in confirming whether condition

(6) holds, i.e., whether the calculated distribution of a player’s action is, indeed, a

distribution. In order to overcome this problem, this section makes use of best action

distributions g(·) which are conjugate for the normal distribution.19

When g is conjugate for the Gaussian, g(·) and R(·) belong to the same distribution

family with R(·) having the same mean as g(·) and a variance reduced by µ/2. In this

way, confirming that (6) gives, indeed, the PDF of a probability distribution boils down

to making sure that the parameters calculated for R(·) fall within the allowed ranges

for the particular distribution family. The method is demonstrated for the skew normal

19Recall that from the result of Section 3, b is the sum of two variables, ai ∼ R and εi ∼ N(0,µ/2).

21



distribution in Section 6.2, while Section 6.3 shows that moving away from the Gaussian

prior leads to new insights about how equilibrium actions and economic fundamentals

are related.

6.2 Application: skew normal g(·)

The skew normal distribution SN(b0,ω,λ) with parameters b0 ∈ R, ω ∈ (0,∞), and

λ ∈ R (introduced by O’Hagan and Leonard 1976), is a continuous distribution over R
with PDF

f (b; b0,ω,λ) =
2
ω
φ

�

b− b0

ω

�

Φ

�

λ

�

b− b0

ω

��

where φ(·) and Φ(·) are, respectively, the PDF and cumulative distribution function

(CDF) of the standard normal distribution (N(0,1)). The important variable here is λ

that adds skewness to the distribution (notice that when λ = 0, the distribution boils

down to a Gaussian).

Using the fact that the skew normal distribution is conjugate for the normal distri-

bution, if b ∼ SN(b0,ω,λ), then ai ∼ SN
�

b0,
p

ω2 −µ/2, λω
�

ω2 −µ(1+λ2)/2
�−1/2�

(see Azzalini 1985). So, as long as information costs are not too large (µ < 2ω2/(1+

λ2)), the function R(·) defined through (6) is the PDF of a skew normal probability

distribution, and the players have a continuous best response to g(·).

θ

a ( θ )

a ( θ ) ± 1.96 ( Var( ai | θ ) )1/2
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(a) Equilibrium average action and “confi-

dence intervals” as a function of the funda-

mental

p ( θ )

h ( a )
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(b) Equilibrium distributions of the funda-

mental, average action, and the action of a

player

Figure 2: Prior and equilibrium objects for an SMFE that has a g(·)which is skew normal

with (ω,λ) = (1,2) and b0 such that E(b) = 0. µ= 0.35, γ= 0.5.
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Figure 2 presents the prior along with equilibrium objects for an SMFE in which

the best action follows a skew normal distribution. In Figure 2a, it is seen that the

population’s average action follows the fundamental more closely for θ to the right

of θ ∗ : ā(θ ∗) = θ ∗ than for θ to the left of θ ∗. This is explained by the fact that the

distribution is right-tailed and therefore there is more variation to which the players pay

attention towards the right end of the distribution. Figure 2b presents the equilibrium

densities of θ , ā, and ai. As expected, the distribution of ai and — even more so — that

of ā are more concentrated than the fundamental’s PDF p(·). Moreover, although the

prior distribution p(·) is only slightly (barely perceivably) skewed, individual actions ai

are clearly skewed (Figure 2b), along with the equilibrium average action ā.

6.3 Implications of non-normality

In theoretical research, using normal priors when real-world distributions of economic

fundamentals are, in fact, non-normal will obviously lead to predictions that are not

entirely accurate. One may wonder, though, to what extent a simplifying assumption

of normality produces inaccurate results and, importantly, whether such a simplification

leads to the researcher missing out on new insights, especially given the high tractability

of models with normal distributions (see Section 5). Using the example of 6.2, this

section demonstrates that even when prior distributions are very close to the normal,

distributions of equilibrium objects can be significantly and qualitatively different from

those derived for the normal.

In order to illustrate these differences, consider two beauty contests both of which

have a coordination motive γ = 0.5 and information cost µ = 0.35. In the first beauty

contest there is an SMFE in which the best action is distributed according to gSN(·), a

skew normal distribution with mean 0 and parameters (ω,λ) = (1,2). Similarly, in the

second beauty contest there is an SMFE in which the best action is distributed according

to a normal distribution gN(·) such that E(gN) = E(gSN) = 0 and Var(gN) = Var(gSN).

The two distributions can be seen in Figure 3a.

Using the method described in 6.1, one can calculate the prior distribution of the

fundamental and the equilbirium distribution of the average action for each of the two

beauty contests. These are seen in panels 3b and 3c, respectively. From the diagrams it

is clear that although the two priors are barely different, the equilibrium distributions of
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(a) Distribution of the equilibrium best action: gN (·) is Gaussian while gSN (·) is skew normal

with positive skewness. The two distributions have the same mean and variance.
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(b) Prior distribution of the fundamental
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(c) Distribution of the average action

Figure 3: Comparison of distributions of prior and equilibrium objects between SMFE

with normal g(·) and skew normal g(·). In both cases µ= 0.35 and γ= 0.5.

ā differ significantly. In particular, the distribution of the best action in the SMFE with

gSN is highly skewed (the left tail almost disappears), even though the prior that gives

rise to it is only slightly away from the Gaussian prior of the second beauty contest.

The preceding analysis shows that highly skewed market obervables do not neces-

sarily reflect highly skewed fundamentals but can be the result of small fundamental

non-normalities, amplified by strong coordination motives and costly information.

Take, for example, a situation based on the model of Hellwig and Veldkamp (2009):

Competing firms choose their (log) price ai trying to match a demand shock (the funda-

mental) in the presence of coordination motives (higher average price leads to higher

best-response price from an individual firm). Now consider an analyst who wants to

study the distribution of the demand shock θ in this market. As fundamentals are un-
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observable, what the analyst can observe are individual and (more realistically) aggre-

gate data, such as the average price. After multiple observations, the analyst observes

a highly skewed distribution of the average price and concludes that the underlying

distribution of the fundamental has a similar property and is by no means close to a

Gaussian. The example presented above, shows that this reasoning is heavily flawed

and that, in fact, the fundamental can be very close to a Gaussian.

Naïvely attempting to draw conclusions about the (unobservable) distribution of the

fundamental from observed market behavior may lead to over-estimating its skewness

and under-estimating its variance. Consequently, this can exacerbate the issues that sta-

tistical inference with skewed distributions brings about (e.g. constructing confidence

intervals). These effects become stronger as information costs or coordination motives

increase.

7 Discussion

This paper studied large coordination games played by rationally inattentive agents in

the presence of fundamental motives. What follows discusses and relates the paper’s

results to the ones found in other studies.

Equilibrium sensitivity

Jung et al. (2019) make the point that small differences in the prior of decision-theoretic

problems of rational inattention can lead to very different behavior of the agent. In par-

ticular, the agent may switch from continuous to discontinuous strategies in problems

whose priors are very close. In Section 6 it was shown that in games with rationally inat-

tentive agents problems with very similar priors can lead to very different equilibrium

behavior even if the equilibria in both problems are in continuous strategies. The reason

for the high sensitivity of solutions to the prior in Jung et al. (2019) is the information

cost being too high for continuous strategies to be optimal in one of the problems, or

the distribution having fat tails. In contrast, the driving force behind the similar result

of Section 6 lies in the coordination motive working together with the information cost.

Even small asymmetries in the prior can lead to players having a preference for one

side of the distribution over the other when they coordinate (since they cannot follow
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the fundamental closely because of information costs). As they make zero error in ex-

pectation (Proposition 7), this results in highly skewed distributions of individual and

average actions.

Equilibrium multiplicity

Existing literature has pointed out that entropy-related information costs, as the ones

used in this paper, can lead to multiple equilibria (e.g. Hellwig, Kohls, and Veldkamp

2012). With flexible information acquisition technology when information is cheap,

players obtain more of it and the game gets closer to a complete-information one. Yang

(2015) uses such a technology to study a two-player coordination game. The complete-

information game has multiple equilibria for a range of realizations of the random vari-

able and this multiplicity is recovered when information costs are low. It is therefore

unclear whether the multiplicity of equilibria is present in his model because of the form

of the underlying game or because of the information acquisition technology employed.

In Section 5 it was shown that multiple AAE arise in for intermediate values of µ

(bounded away from zero for any fixed γ > 1/2). On the one hand, this differs from

the result of Yang (2015) who finds multiple equilibria for low values of the information

cost — even though both the interaction studied here and the one in his study are co-

ordination games (with the caveat that the statement is only for affine equilibria in the

present setting). On the other hand, in agreement with results in Yang (2015), when in-

formation costs are small, the equilibrium structure of the complete-information game

is recovered: a unique equilibrium in the present case, multiple in Yang’s. So, van-

ishing information costs under flexible information acquisition lead to recovery of the

equilibrium structure of the full-information game (cf. global games, Carlsson and van

Damme 1993). This observation is also consistent with Morris and Yang (2016). In

their setting (which has multiple equilibria under full information), continuous choice

breaks when it is sufficiently easy to distinguish nearby states, and multiple equilibria

appear.20 Under the rational inattention framework of this paper, nearby and far away

states are always equally easy to distinguish. This, in turn, leads to the equilibrium

structure of the full-information game being recovered when information costs vanish.

20A recent experiment by Goryunov and Rigos (2019) reports that the behavior of laboratory partici-

pants is consistent with this intuition.

26



Moreover, the results of Section 5 confirm that with mutual information costs equilib-

rium multiplicity can arise, even when attention is restricted to a very particular class

of tractable equilibria.

Finally, relating to Section 4.3, populations with heterogeneous costs can give rise to

situations in which some individuals use continuous strategies while others, with higher

costs, use discrete strategies (or even not acquire information whatsoever). Such cases

introduce a new channel for equilibrium multiplicity which can be investigated further.

Linear equilibria

The notion of a linear equilibrium is often encountered in existing literature studying

beauty contest-like games (see for example Angeletos and Pavan 2007; Morris and Shin

2002; Myatt and Wallace 2012). In linear equilibria each player takes an action that is

a linear combination of the messages she receives from (potentially) different sources.

When signal noises and the prior follow normal distributions — which is the common

modelling choice in the aforementioned literature — then any linear equilibrium is

also aggregately affine in the sense of Section 5. Proposition 10 shows that tractability

of equilibria when players are rationally inattentive is heavily dependent on this very

assumption. As soon as one parts with the normal prior assumption, one has to accept

that deriving equilibria in closed form may be impossible. Importantly, Proposition 6

and the method of Section 6.1 can help identify or approximate equilibria even when

the prior is not normal.

Improper priors

In order to compare this paper’s results with those in settings with uniform (improper)

priors (e.g. Morris and Shin 2002; Myatt and Wallace 2012) one has to treat the proper

prior p(·) as an interim belief shared by all players after observing a public signal and

before observing their private ones. If, for example, the public signal is distributed

around the realization of the fundamental as N(θ ,σ2), then it should lead to a common

Gaussian interim belief (which is the “prior” in the present model). Myatt and Wallace

(2012) find that under certain conditions two linear equilibria may arise under a mutual

information-based cost specification: one with and one without information acquisition.
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The analysis conducted in Section 5 shows that there is one more aggregately affine

equilibrium with a lower degree of information acquisition which is albeit unstable

(Appendix B).

Conditionally correlated signals

Hellwig and Veldkamp (2009) point out that strategic complementarities lead to com-

plementarities in players’ information acquisition decisions. Moreover, one can think

of situations where a player may want to have information about other players’ signal

realizations or may even want other players to have information about her own realiza-

tion (as in Kozlovskaya 2018, for example). The model presented here does not allow

for such correlation as the only information players can obtain is about the fundamental

and not about others’ signal realizations (signals are always conditionally independent).

However — as Denti (2019) argues — when all players are “small” and aggregate be-

havior is all that matters, incentives to learn about others’ signal realizations disappear

as aggregate behavior becomes a deterministic function of the fundamental.

Appendix

A Omitted Proofs

A.1 Proof of Proposition 1

As µ = 0, player i can obtain full information on the value of θ without paying any

costs. So, conditional on the value of θ , her optimization problem becomes

max
ai

−(1− γ)(ai − θ )2 − γ(ai − ā(θ ))2

Taking a first order condition, one obtains that the optimal action is given by

(1− γ)θ + γā(θ ).

So, given any ā(·) and any value of θ , player i has a unique best action given by the

expression b(θ ) = (1− γ)θ + γā(θ ). Thus, her best response is to assign a probability
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mass of 1 to that action (conditional on θ). That is, her best response is to use ri given

by ri(ai|θ ) = δ(ai − b(θ )) with δ being Dirac’s delta function (almost all θ).

A.2 Proof of Proposition 2

Consider variations of the strategy of player i. These variations will be of the type

r̃ = r + εη for some ε > 0. These variations should still be feasible. That is, for all θ ,

it is required that r(·|θ ) + εη(·|θ ) is a probability distribution over Ai. It is required,

thus, that for all θ ,
∫

Ai
r(ai|θ ) + εη(ai|θ )dai = 1 which leads to the condition that

for all θ ,
∫

Ai
η(ai|θ )dai = 0. It also has to be that r(ai|θ ) + εη(ai|θ ) ≥ 0 and so

η(ai|θ ) ≥ −r(ai|θ )/ε for all ai and θ . From the above equations, the following is

calculated:21

U(ri + εη, r−i) = −(1− γ)
∫

Θ

∫

Ai

(ai − θ )2(ri(ai|θ ) + εη(ai|θ ))p(θ )dai dθ −

− γ

∫

Θ

∫

Ai

(ai − ā(θ ))2(ri(ai|θ ) + εη(ai|θ )p(θ )dai dθ . (16)

And the derivatives:

dU(r + εη, r−i)
dε

�

�

�

�

ε=0

= −(1− γ)
∫

Θ

∫

Ai

(ai − θ )2η(ai|θ )p(θ )dai dθ − (17)

− γ

∫

Θ

∫

Ai

(ai − ā(θ ))2η(ai|θ )p(θ )dai dθ

dI(r + εη)
dε

�

�

�

�

ε=0

=

∫

Θ

∫

Ai

log(r(ai|θ ))η(ai|θ )p(θ )dai dθ − (18)

−
∫

Ai

log(Ri(ai))H(ai)dai

with H(ai) =
∫

Θ
η(ai|θ )p(θ )dθ .

Since the variations considered have to be feasible, player i has to solve the following

constrained optimization problem:

max
ri∈L1(Θ,p)

U(ri, r−i)−µI(ri)

21The effect of the other players’ strategies is incorporated in ā(θ ).
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s.t.

∫

Ai

ri(ai|θ )dai = 1 for all θ ∈ Θ.

So, the Lagrangian for player i’s decision problem will be

L (ri, k(θ )) = U(ri, r−i)−µI(θ , ai)−
∫

Θ

k(θ )

�

∫

Ai

r(ai|θ )dai − 1

�

p(θ )dθ

where k(θ ) is the Lagrange multiplier for the θ -constraint.

Therefore, for any given θ ∈ Θ and all possible perturbations η, an optimal strategy

r should satisfy the following first order conditions:

dL (ri + εη, k(θ ))
dε

�

�

�

�

ε=0

= 0⇒
∫

Θ

∫

Ai

�

ui(ai,θ )−µ log
�

r(ai|θ )
Ri(ai)

�

− k(θ )
�

η(ai|θ )p(θ )dai dθ = 0 (19)

and

∫

Ai

ri(ai|θ )dai = 1 for all θ ∈ Θ. (20)

Where

ui(ai,θ ) = −(1− γ)(ai − θ )2 − γ(ai − ā(θ ))2. (21)

Since condition (19) has to be satisfied for all η, it has to be the case that

−(1− γ)(ai − θ )2 − γ(ai − ā(θ ))2 −µ [log(ri(ai|θ ))− log(Ri(ai))] = k(θ ) for all θ ∈ Θ.

So r(ai|θ ) has to be:

r(ai|θ ) = Ri(ai)exp
�

−
k(θ )
µ

�

exp
�

ui(ai,θ )
µ

�

(22)

and (22) can be rewritten as

r(ai|θ ) = Ri(ai)K(θ )exp
�

ui(ai,θ )
µ

�

. (23)

where K(θ ) = exp
�

− k(θ )
µ

�

. All that remains to be done is to determine the functions

K(·) and Ri(·). Now, from the definition of Ri(ai):

Ri(ai) =

∫

θ

r(ai|θ )p(θ )dθ ⇒
∫

Θ

r(ai|θ )
Ri(ai)

p(θ )dθ = 1.
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After substituting from (23) and (21), simple calculations give
∫ +∞

−∞
K(θ )exp

�

−
(ai − b(θ ))2

µ

�

exp
�

−
γ(1− γ)
µ

(θ − ā(θ ))2
�

p(θ )dθ = 1. (24)

In the above, b(θ ) = (1−γ)θ +γā(θ ). By assumption (smooth, monotone, full-support

strategy profile), b is invertible with b−1 being the inverse of b. Because of assumption

2 of Definition 1, b(·) is bijective and strictly increasing. Thus, limb→∞ b−1(b) =∞
and limb→−∞ b−1(b) = −∞. So, with a change of the variable of integration from θ to

b = b(θ ), and by defining G(·) as

G(b) =
K(b−1(b))exp

�

−γ(1−γ)µ (b−1(b)− ā(b−1(b)))2
�

p(b−1(b))

(1− γ) + γā′(b−1(b))
(25)

condition (24) can be rewritten as
∫ +∞

−∞
G(b)exp

�

−
1
µ
(ai − b)2

�

db = 1. (26)

Notice that the above condition has to hold for all ai ∈ R. This can only happen if

G(b) = 1/
p
πµ.

Proof. Notice that the left-hand side of equation (26) is the convolution of G and f

given by f (x) = exp(−x2/µ). Now, take the Fourier transform on both sides and use

the convolution theorem:

Fai
[(G ∗ f )(ai)](ξ) = Fai

[1](ξ)⇒Fai
[G(ai)](ξ) · Fai

[ f (ai)](ξ) = δ(ξ)

⇒Fai
[G(ai)](ξ) =

1
p
πµ

exp(µπ2ξ2)δ(ξ)

Where δ(·) is Dirac’s delta function. By taking the inverse Fourier transform on both

sides, the statement is proven:

G(b) = F−1
ξ

�

1
p
πµ

exp(µπ2ξ2)δ(ξ)

�

(b)

=
1
p
πµ

∫ +∞

−∞
exp(2πıξx)exp(µπ2ξ2)δ(ξ)dξ=

1
p
πµ

.

So now K(θ ) can be calculated.

K(θ ) =
1+ γ(ā′(θ )− 1)

p(θ )pπµ
exp

�

γ(1− γ)
µ

(θ − ā(θ ))2
�

(27)
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Using (27) in (23) yields

r(ai|θ ) = Ri(ai)
1+ γ(ā′(θ )− 1)

p(θ )pπµ
exp

�

−
(ai − b(θ ))2

µ

�

. (28)

The solution has to also satisfy
∫ +∞
−∞ r(ai|θ )dai = 1 for all θ . Again, changing the

variable from θ to b = b(θ ), this condition yields

∫ +∞

−∞
Ri(ai)exp

�

−
(b− ai)2

µ

�

dai =
p
πµp(b−1(b))

�

b−1
�′
(b). (29)

Notice that the left-hand side of equation (29) is the convolution of Ri and f . Now, take

the Fourier transform on both sides and use the convolution theorem

Fai
[Ri(ai)](ξ) · Fb[ f (b)](ξ) =

p
πµ · Fb[p(b

−1(b))
�

b−1
�′
(b)](ξ)⇒

Fai
[Ri(ai)](ξ) = exp(µπ2ξ2) · Fb[p(b

−1(b))
�

b−1
�′
(b)](ξ)⇒ (30)

Ri(ai) =F−1
ξ
[exp(µπ2ξ2) · Fb[p(b

−1(b))
�

b−1
�′
(b)](ξ)](ai) (31)

If the expression above is the PDF of a probability distribution, then the solution is

calculated by equation (23) which — after noticing that g(b) = p(b−1(b))
�

b−1
�′
(b) is

the PDF of the best action b = b(θ )— becomes

ri(ai|θ ) = Ri(ai)
b′(θ )

p(θ )pπµ
exp

�

−
(ai − b(θ ))2

µ

�

(32)

with

Ri(ai) =F−1
ξ
[exp(µπ2ξ2) · Fb[g(b)](ξ)](ai). (33)

This solution is unique. The analyticity of p(·) and b(·) (and, therefore, of g(·)) ensures

that the solution to the player’s decision problem is actually in continuous strategies

rather than in strategies that put positive probability mass on a countable set of actions

i.e. discrete or strategies with both a discrete and a continuous part (see Matějka and

Sims 2010, Proposition 2).

Now, for the “only if” part, if R(·) defined through (33) was not the PDF of a prob-

ability distribution, player i would not have a continuous best reply to r−i. Because if

she did, the marginal of her action would need to be defined by equation (33).
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A.3 Proof of Proposition 3

From Bayes’s rule, one gets:

%i(b|ai) =
τi(ai|b)g(b)

R(ai)
(34)

where τi(·|b) is the PDF of player i’s action ai conditional on the best action being b.

As b(·) is bijective with inverse b−1(·), one can derive τi from the result of Proposition

2 with a change of variable:

τi(ai|b) =
Ri(ai)

p(b−1(b)) (b−1)′ (b)
1
p
πµ

exp

�

−
(ai − b)2

µ

�

= Ri(ai)
1

g(b)
1
p
πµ

exp

�

−
(ai − b)2

µ

�

and comparing with (34), one obtains

%i(b|ai) =
1
p
πµ

exp

�

−
(ai − b)2

µ

�

.

A.4 Proof of Proposition 4

Denote by τ(a|b) the probability density of action a conditional on the best action being

b in player i’s best response. From Bayes’s rule

τ(a|b) =
%(b|a)R(a)

g(b)
.

Using the property of the Fourier transform (see equation (38)), the expected action

of player i, conditional on b, is

α(b) = −
1

2πı
(Fa[t(a|b)])

′ (0) = −
1

g(b)2πı
(Fa[%(b|a)R(a)])

′ (0)

and using the convolution theorem as well as the properties of the Fourier transform,

α(b) = −
1

g(b)2πı

�

Fa[%(b|a)] ∗ (Fa[R(a)])
′� (0). (35)

Now

Fa[%(b|a)](x) =Fa

�

1
p
πµ

exp
�

−
(a− b)2

µ

�

�

(x)
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=
1
p
πµ

exp(−2πıbx)Fa

�

exp
�

−
a2

µ

��

(x)

= exp(−2πıbx)exp
�

−µπ2 x2
�

≡ψ(x) (36)

And

(Fa[R(a)])
′ (x) =

d
dξ

�

exp(µπ2ξ2) · Fb̃[g
�

b̃
�

](ξ)
��

�

ξ=x

= 2µπ2 x exp
�

µπ2 x2
�

Fb̃

�

g
�

b̃
��

(x)
︸ ︷︷ ︸

ζ1(x)

+exp
�

µπ2 x2
� �

Fb̃

�

g
�

b̃
���′
(x)

︸ ︷︷ ︸

ζ2(x)

(37)

So,

(ψ ∗ ζ1) (0) =

∫ +∞

−∞
ζ1(y)ψ(−y)dy

=

∫ +∞

−∞
2µπ2 y exp

�

µπ2 y2
�

Fb̃

�

g
�

b̃
��

(y)exp(2πıb y)exp
�

−µπ2 y2
�

dy

= 2µπ2

∫ +∞

−∞
exp(2πıb y)yFb̃

�

g
�

b̃
��

(y)dy = 2µπ2F−1
�

yFb̃

�

g
�

b̃
��

(y)
�

(b) = 2µπ2 1
2πı

g ′(b)

and

(ψ ∗ ζ2) (0) =

∫ +∞

−∞
ζ2(y)ψ(−y)dy

=

∫ +∞

−∞
exp

�

µπ2 y2
� �

Fb̃

�

g
�

b̃
���′
(y)exp(2πıb y)exp

�

−µπ2 y2
�

dy

=

∫ +∞

−∞
exp(2πıb y)

�

Fb̃

�

g
�

b̃
���′
(y)dy =

2π
ı

bg(b)

Bringing everything together

α(b) = −
1

g(b)2πı
((ψ ∗ ζ1) (0) + (ψ ∗ ζ2) (0))

and, finally,

α(b) = b+
µ

2
g ′(b)
g(b)

.
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A.5 Proof of Proposition 5

It follows from the definition of the Fourier transform that for any integrable function

f , Fx[ f (x)](0) =
∫ +∞
−∞ f (x)dx . So, as g is a PDF, Fx[g(x)](0) = 1. Moreover, the

mean of a random variable x with PDF px is given by

E(x ) =
1
−2πı

(Fx[px (x)])
′(0) (38)

and its variance given by

Var(x ) = σ2
x =

�

1
−2πı

�2

(Fx[px (x)])
′′(0)− (E(x ))2 . (39)

Point 1:

So, taking the first derivative on both sides of equation (33) at ξ = 0 and multiplying

by (−2πı)−1 results in

E(ai) = E(b) (40)

and taking the second derivative on both sides of equation (33) at ξ = 0, multiplying

by (−2πı)−2 and taking into account that E(ai) = E(b) results in

Var(ai) = −
µ

2
+σ2

b. (41)

Point 2:

Following the same process for τ(·|b), yields

Var(ai|b) =
�

1
−2πı

�2

(Fa[τ(a|b)])′′(0)− (E(ai|b))
2 . (42)

Now

(Fa[τ(a|b)])′′(x) =
�

Fa

�

%(b|a)R(a)
g(b)

��′′

(x) =
1

g(b)
(Fa[%(b|a)R(a)])

′′ (x)

and

(Fa[%(b|a)R(a)])
′′ (x) =

�

Fa[%(b|a)] ∗ (Fa[R(a)])
′′� (x). (43)

Taking (37) and calculating the derivative, one gets

(Fa[R(a)])
′′ (x) = R̂′′(x) =

4µ2π4 x2 exp
�

µπ2 x2
�

ĝ(x)
︸ ︷︷ ︸

ζ3(x)

+4µπ2 x exp
�

µπ2 x2
�

ĝ ′(x)
︸ ︷︷ ︸

ζ4(x)
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+2µπ2 exp
�

µπ2 x2
�

ĝ(x)
︸ ︷︷ ︸

ζ5(x)

+exp
�

µπ2 x2
�

ĝ ′′(x)
︸ ︷︷ ︸

ζ6(x)

.

Moreover, from (36)

Fa[%(b|a)](x) = exp(−2πıbx)exp
�

−µπ2 x2
�

≡ψ(x)

and

(ψ ∗ ζ3)(0) =

∫ +∞

−∞
ζ3(y)ψ(−y)dy = (2µπ2)2F−1

y

�

y2 ĝ(y)
�

(b) = −µ2π2 g ′′(b)

(ψ ∗ ζ4)(0) =

∫ +∞

−∞
ζ4(y)ψ(−y)dy = 4µπ2F−1

y [y ĝ ′(y)](b) = −4µπ2
�

g(b) + bg ′(b)
�

(ψ ∗ ζ5)(0) =

∫ +∞

−∞
ζ5(y)ψ(−y)dy = 2µπ2 g(b)

(ψ ∗ ζ6)(0) =

∫ +∞

−∞
ζ6(y)ψ(−y)dy =F−1

y [ ĝ
′′(y)](b) = −4π2 b2 g(b)

Substituting the above together with E(ai|b) = b+ µ

2
g ′(b)
g(b) into (42) yields the result:

Var(ai|b) =
µ

2
+
µ2

4
d2

db2
log(g(b))

Point 3:

From equation (9), one gets:

α′(b) = 1+
µ

2
d2

db2
log(g(b))

and, using the result of point 2,

Var(ai|b) =
µ

2
α′(b).

Now, since τ(·|b) is a probability distribution, its conditional variance should be non-

negative and, since g is analytic, well-defined (finite). So, since Var(ai|b) ≥ 0, the

above equation leads to α′(b) ≥ 0. As b′(θ ) > 0 for all θ , E(ai|θ ) is an increasing

function of θ .
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A.6 Proof of Proposition 6

Start with the following Lemma.

Lemma 1. Consider a beauty contest with flexible information acquisition. Then all SMFE

are essentially symmetric i.e. in equilibrium all players use strategies that are equal to the

same strategy r̃ almost everywhere.

Proof. As there is a continuum of players, any single player i cannot influence the

average action taken by the population for any value of θ . This means that all players

face the same decision problem. Recall that each player has a unique best reply (up

to deviations of measure zero, see Proposition 2) to a smooth, monotone, full-support

profile. Thus, in equilibrium, the strategies that the players are using should be equal

to the same strategy r̃ almost everywhere.

“A⇒ B”

In light of Lemma 1, since all players have essentially the same best response to the

equilibrium profile, the average action of the population conditional on b is given by

α(b) = b+
µ

2
g ′(b)
g(b)

.

In equilibrium, the best action b should be the one that is generated by aggregating the

best responses of the players, i.e.,

b = γα(b) + (1− γ)θ (b)

and, therefore, in equilibrium

θ (b) = b−
γµ

2(1− γ)
g ′(b)
g(b)

.

Moreover, g(·) should be the distribution that is generated by θ (·), i.e., (see eq. (5))

g(b) = p(θ (b))θ ′(b).

“B⇒ A”

Firstly, if θ (·) is the inverse of the best action function, then the best action’s distribution

has the PDF g(b) = p(θ (b))θ ′(b). Since g(·) has a variance larger than µ/2, the unique

best response to it is continuous (see Proposition 2).
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The fact that θ (·) and g(·) satisfy (12) says that the profile where all players best

respond to θ (·) (equivalently, b(·)) gives rise to θ (·) as the inverse of the best action

function i.e. that it is an SMFE.

A.7 Proof of Proposition 7

Point 1:

From the definition of b it is clear that E(ā) = E(b)⇔ E(b) = θ̄ . So, all that needs to

be shown is that E(ā) = E(b).
Let ri be the best response to b(·) and begin from the left-hand side of the above

equation:

E(ā) =
∫ +∞

−∞
ā(θ )p(θ )dθ =

∫ +∞

−∞

∫ +∞

−∞
ai ri(ai|θ )dai p(θ )dθ =

∫ +∞

−∞
ai

∫ +∞

−∞
ri(ai|θ )p(θ )dθ dai =

∫ +∞

−∞
R(ai)ai dai = E(ai)

From the proof of Section A.5, since ri is a best response to b(·) one gets that E(ai) =

E(b) so E(ā) = E(b).
Points 2 and 3:

It is first shown that limθ→+∞ p(θ )/b′(θ ) = 0. Begin by integrating condition (14).
∫ +∞

−∞
b(θ )p(θ )dθ =

∫ +∞

−∞
θ p(θ )dθ +

µγ

2(1− γ)

∫ +∞

−∞

1
b′(θ )

d
dθ

�

log
�

p(θ )
b′(θ )

��

p(θ )dθ

The above expression is well-defined in a smooth, monotone, full-support profile. From

the proof of point 1,
∫ +∞
−∞b(θ )p(θ )dθ =

∫ +∞
−∞θ p(θ )dθ . So:

∫ +∞

−∞

p(θ )
b′(θ )

d
dθ

�

log
�

p(θ )
b′(θ )

��

dθ =

∫ +∞

−∞

d
dθ

�

p(θ )
b′(θ )

�

dθ =
�

p(θ )
b′(θ )

�θ=+∞

θ=−∞
= 0.

So, limθ→+∞
p(θ )
b′(θ ) = − limθ→−∞

p(θ )
b′(θ ) and the two limits exist. As p is a PDF, it has to

be that limθ→+∞ p(θ ) = limθ→−∞ p(θ ) = 0. Now focus on limθ→+∞ p(θ )/b′(θ ). There

are three possible cases:

(i) limθ→+∞ p(θ )/b′(θ ) = +∞.

As limθ→+∞ p(θ ) = 0, it has to be that limθ→+∞ b′(θ ) = 0. But then, there exists

a θ ′ such that b(θ ) < θ for all θ > θ ′. So, from equation (12), it has to be that

38



p(θ )/b′(θ ) is decreasing for all θ > θ ′. This contradicts limθ→+∞ p(θ )/b′(θ ) =

+∞.

(ii) limθ→+∞ p(θ )/b′(θ ) = l > 0.

In this case, there exists a θ ′′ such that p(θ )/b′(θ ) ≥ l/2 for all θ ≥ θ ′′. Since

b′ > 0, b is strictly increasing and thus limθ→+∞ b(θ ) is well-defined (possibly

infinite). So, for θ ≥ θ ′′ it has to be that b′(θ ) ≤ (2/l)p(θ ) and integrating

this gives
∫ θ

θ ′′
b′(x)dx ≤ (2/l)

∫ θ

θ ′′
p(x)dx ≤ 2/l and so b(θ )− b(θ ′′) ≤ 2/l. So,

limθ→∞ b(θ )≤ 2/l + b(θ ′′)< +∞. This contradicts that b(·) is bijective.

(iii) limθ→+∞ p(θ )/b′(θ ) = 0.

Since the other two cases lead to contradictions, it has to be that this is the case.

A similar argument can be made for the case where θ →−∞.

So, limθ→+∞ p(θ )/b′(θ ) = limθ→−∞ p(θ )/b′(θ ) = 0.

By solving condition (14) for p one gets

p(θ ) =
p(θ ′)
b′(θ ′)

b′(θ )exp

�

2(1− γ)
µγ

∫ θ

θ ′

b′(t)(b(t)− t)dt

�

(44)

for any θ ′ ∈ R. And so

p(θ )
b′(θ )

=
p(θ ′)
b′(θ ′)

exp

�

2(1− γ)
µγ

∫ θ

θ ′

b′(t)(b(t)− t)dt

�

.

Now, taking the limit for θ → +∞:

lim
θ→+∞

p(θ )
b′(θ )

=
p(θ ′)
b′(θ ′)

exp

�

2(1− γ)
µγ

∫ +∞

θ ′

b′(t)(b(t)− t)dt

�

.

As limθ→+∞ p(θ )/b′(θ ) = 0 and p(θ ′)/b′(θ ′)> 0 for any θ ′, it has to be that

∫ +∞

θ ′

b′(t)(b(t)− t)dt = −∞

for all θ ′ ∈ R. Clearly, as b′(θ )> 0 for all θ this can happen only if limθ→+∞ b(θ )−θ <
0. The same arguments for ā can be given if one takes into account the definition of

b(θ ) = (1− γ)θ + γā(θ ). A similar argument can be given for θ →−∞.
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A.8 Proof of Proposition 8

Point 1:

From player i’s point of view, and given that she knows the function b(·), there are

two random variables: θ and ai. One can define more random variables, namely y =

E(ai|θ ) which is the (equilibrium) average action given θ and x = (1−γ)θ+γy , which

is the best action given θ . Using the variance decomposition formula for ai, one obtains

Var(ai) = E(Var(ai|θ )) + Var(E(ai|θ )) = E(Var(ai|θ )) + Var(y)

Using this and from equation (41) (in the proof of Proposition 2), one gets

Var(x) =
µ

2
+ Var(ai) =

µ

2
+E(Var(ai|θ )) + Var(y). (45)

As y = x/γ+ (1− γ)θ/γ,

Var(y) =
�

1
γ

�2

Var(x) +
�

1− γ
γ

�2

Var(θ )−
2(1− γ)
γ2

Cov(x ,θ ). (46)

Substituting (46) into equation (45) and after calculations, one gets

γ(Var(θ )− Var(x)) =
µγ2

2(1− γ)
+
γ2

1− γ
E(Var(ai|θ )) + Var(θ ) + Var(x)− 2Cov(x ,θ )).

Now, notice that

Var(θ ) + Var(x)− 2Cov(x ,θ ) = Var(θ − x)

and thus

σ2 −σ2
b =

µγ

2(1− γ)
+

γ

1− γ
E(Var(ai|θ )) +

1
γ

Var(θ − b) (47)

where σ2 = Var(θ ) and σ2
b = Var(x).

Now, from the result of Proposition 5:

E(Var(ai|θ )) =
µ

2
+
µ2

4

∫ +∞

−∞

d2

db2
(log(g(b)))g(b)db =

µ

2
+
µ2

4

�

�

d
db
(log(g(b)))g(b)

�+∞

−∞
−
∫ +∞

−∞

d
db
(log(g(b)))g ′(b)db

�

⇒

E(Var(ai|θ )) =
µ

2
+
µ2

4

∫ +∞

−∞

d
db
(log(g(b)))g ′(b)db (48)
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Moreover, from (9) and the fact that E(ā) = E(b):

Var(ā− b) =
µ2

4

∫ +∞

−∞

d
db
(log(g(b)))g ′(b)db

Using this into (48) and substituting into (47):

σ2 −σ2
b =

µγ

2(1− γ)
+

γ

1− γ

�µ

2
+ Var(ā− b)

�

+
1
γ

Var(θ − b)

Finally, as (b− ā) = 1−γ
γ θ − b, one gets that Var(b− ā) = (1−γ)2

γ2 Var(θ − b). So

σ2 −σ2
b =

µγ

1− γ
+ Var(θ − b)

Point 2:

As in an SMFE ri is the best response to a smooth, monotone, full-support strategy

profile that induces a best action function b(·), it has to be that Var(b) > µ/2. Using

this along with the result of Proposition 8, point 1, one gets that

µ

2
< σ2 −

µγ

1− γ
− Var(θ − b)⇒

µ <
2(1− γ)

1+ γ
σ2 −

2(1− γ)
1+ γ

Var(θ − b)<
2(1− γ)

1+ γ
σ2

A.9 Proof of Proposition 9

By Bochner’s theorem (Bochner 1933; Rudin 1962, p.19), since Rmax ≡F−1
ξ

�

exp(µmaxπ
2ξ2) ĝ(ξ)

�

is the PDF of a probability distribution, R̂max, given by R̂max(ξ) = exp(µmaxπ
2ξ2) ĝ(ξ), is

a positive definite function. Begin by the following observation:

exp(µπ2ξ2) ĝ(ξ) = exp(−(µmax−µ)π2ξ2)exp(µmaxπ
2ξ2) ĝ(ξ) = exp(−(µmax−µ)π2ξ2)R̂max.

So, exp(µπ2ξ2) ĝ(ξ) is a positive definite function as the product of two positive definite

functions (notice that exp(−(µmax − µ)π2ξ2) is the Fourier transform of the normal

distribution N(0, (µmax −µ)/2) and, thus, positive definite).

Therefore, according to Proposition 2, all players’ best responses are in continuous

strategies. Moreover, the expected action of a player with information cost µi condi-

tional on the best action being b is given by:

αi(b,µi) = b+
µi

2
d

db
(log(g(b))).
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So, the average action conditional on b is given by

α(b) =

∫ µmax

µmin

αi(b,µi)dM(µi) =

∫ µmax

µmin

b+
µi

2
d

db
(log(g(b)))dM(µi)

= b+
µ̄

2
d

db
(log(g(b)))

The final part follows from an argument identical to the one used in Proposition 6.

A.10 Proof of Proposition 10

“A⇒ B”

In an AAE the best action function is given by b(θ ) = κθ + d. So, b′(θ ) = κ and

b′′(θ ) = 0 for all θ . Moreover, an AAE is an SMFE, so b(·) should satisfy (14). From

equation (14) one obtains:

κθ + d = θ +
µγ

2(1− γ)
1
κ

d
dθ

log p(θ ).

And thus,

log p(θ ) =

∫

2(1− γ)κ
µγ

((κ− 1)θ + d)dθ + C

where C ∈ R is an integrating constant. It will have to be chosen so that the condition
∫ +∞
−∞p(θ )dθ = 1 is satisfied. From the previous equation:

log p(θ ) =
(1− γ)κ
µγ

((κ− 1)θ 2 + 2dθ ) + C .

Completing the square in the brackets and taking the exponential of both sides one

obtains:

p(θ ) = exp(C ′)exp

�

(1− γ)κ(κ− 1)
µγ

�

θ −
d

1− κ

�2
�

for some other constant C ′. Now, for
∫ +∞
−∞p(θ )dθ = 1 to be satisfied, it has to be that

κ ∈ (0,1), otherwise the resulting p will not be integrable. It is clear that — for an

appropriate selection of C ′ — the previous expression is a normal distribution with a

mean θ0 = d/(1−κ) and variance

σ2 =
µγ

2(1− γ)κ(1−κ)
.
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More than that, since in an AAE it has to be that σ2
b > µ/2, one gets that κ2σ2 >

µ/2 i.e. that σ2 > µ/2κ2. Using this together with the above equation, one gets that

κ > 1−γ. So, a lower bound for the value of σ2 is given by the solution to the problem

min
κ∈(0,1)

µγ

2(1− γ)κ(1− κ)

s.t. κ≥ 1− γ

The solution is κ = 1/2 when γ > 1/2 and κ = 1− γ when γ ≤ 1/2 yielding the lower

bounds of the variance to be

σ2 >
µ

2(1− γ)2
when γ≤

1
2

and σ2 >
2µγ
1− γ

when γ >
1
2

.

“B⇒ A”

According to Proposition 6 if b(θ ) = κθ + d satisfies (14) and condition (6), then b(·)
is the best action function of an SMFE; and since it is affine, it is also the best action

function of an AAE. All that needs to be shown is that such κ > 0 and d ∈ R exist.

The fundamental is distributed according to

p(θ ) =
1

p
2πσ

exp

�

−
(θ − θ̄ )2

2σ2

�

.

So, p′(θ )
p(θ ) = −

θ−θ̄
σ2 . This, along with b′(θ ) = κ and b′′(θ ) = 0 make equation (12), read:

κθ + d = θ −
µγ

2(1− γ)κ
θ − θ̄
σ2

.

Solving for κ and d, one obtains two solutions:

κ+ =
1
2

�

1+

√

√

1−
2µγ

(1− γ)σ2

�

d+ =
µγ

2(1− γ)σ2κ+
θ̄

and

κ− =
1
2

�

1−
√

√

1−
2µγ

(1− γ)σ2

�

d− =
µγ

2(1− γ)σ2κ−
θ̄ .

For either of κ+ or κ− to be positive reals, it is needed that σ2 >
2µγ
1−γ .

The second requirement for b(θ ) = κθ+d to qualify for an AAE best action function

is that Var(b)> µ/2 i.e. that κ2σ2 > µ/2. This condition for the solution κ+, d+ implies

that either σ2 >
µ

1−γ or σ2 >
µ

2(1−γ)2 . Together with σ2 >
2µγ
1−γ , the restrictions require

that
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• either γ≤ 1/2 and σ2 >
µ

2(1−γ)2

• or γ > 1/2 and σ2 >
2γµ
1−γ .

These are exactly the conditions assumed in statement B. So, the solution with slope

κ+ is always the best action function of an AAE.

A.11 Proof of proposition 11

Already from the proof of section A.10, it is known that the solution with slope κ+ is

the best action function of an AAE when either γ ≤ 1/2 and σ2 >
µ

2(1−γ)2 ; or γ > 1/2

and σ2 >
2γµ
1−γ . All that remains to be shown is that the solution with slope κ− is an AAE

iff γ > 1/2 and σ2 ∈
�

2µγ
1−γ ,

µ

2(1−γ)2

�

. Again, the requirements are that: σ2 >
2µγ
1−γ and that

κ2
−σ

2 > µ/2. After substituting κ−, the resulting system of inequalities is

σ2 >
2µγ
1− γ

σ2 >
µ

1− γ
σ2 <

µ

2(1− γ)2

which coincide only for γ > 1/2 and σ2 ∈
�

2µγ
1−γ ,

µ

2(1−γ)2

�

.

B AAE stability

In the cases where multiple equilibria exist, it is important to determine which of them

are in some sense “stable.” The approach taken here is based on recursive best responses

and follows from the following observation.

Say the population of players follows a strategy profile under which the best action

function is affine and its average is θ̄ (i.e. satisfies point 1 of Proposition 7), which

makes it an AAE candidate. Then the best action function has the form

b(θ ) = κθ + (1−κ)θ̄

for some κ > 0. Now assume that all players are best-responding to b(·) and find the

best action function of the resulting profile. If Var(b) < µ/2 — which happens for

κ2 < µ/2σ2 — then the best response is to acquire no information and the resulting

slope of the best action function is κ = 1− γ. If, on the other hand κ2 > µ/2σ2, then
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from the proof of Proposition 6 — applied for the case of a normal prior — one can see

that the new best action function is given by

b̃(θ ) =
�

1− γ
� µ

2κσ2
+ (1− κ)

��

θ +
�

γ
� µ

2κσ2
+ (1−κ)

��

θ̄ .

Which is also affine with a slope of κ′ = 1−γ
�

µ

2κσ2 + (1−κ)
�

and has an average of θ̄ .

So, the best response to an aggregately affine profile with slope κn has a best action

function whose slope is given by the mapping

κn+1 =

¨

1− γ if κ2
n ≤

µ

2σ2

1− γ
�

µ

2κnσ2 + (1− κn)
�

otherwise
(49)

and the slope of any AAE should be a fixed point of (49).

Thinking about iterative best responses and conducting standard stability analysis,

one can see that when multiple AAE exist (see point 2 of Proposition 11) the fixed point

at κ− =
1
2

�

1−
Ç

1− 2µγ
(1−γ)σ2

�

is unstable whereas the one at κ+ =
1
2

�

1+
Ç

1− 2µγ
(1−γ)σ2

�

is stable. These results are summarized in Figure 4.
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Figure 4: Stability analysis for the slope κ of the equilibrium best action function in an

AAE. In the upper row γ < 1/2 whereas in the lower row γ > 1/2. Information costs µ

are decreasing from left to right. The shaded region depicts areas that imply an average

action function with a negative slope.
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